

SF32LB58x

Tri-core Arm Cortex-M33 STAR-MC1@240MHz/96MHz, 2362 CoreMark 2D/2.5D GPUs, 3744KB SRAM, Dual-mode BT5.3, TinyML

Product Brief

Key Features

- Bluetooth MCU with tri-core Arm Cortex-M33 STAR-MC1 up to 240MHz/96MHz, 2362 Core-Mark, 887 DMIPS, suitable for both feature-rich graphical HMI and ultra-low power sensor hub operation
- Dual 2D/2.5D GPU, 240MHz, 4layer blending, vector graphics and fonts, rotation and scaling
- eZip[™]2.0 lossless graphics decompression, saving memory bandwidth and capacity as well as data transfer power
- Dual-mode BT5.3, BR sensitivity at -96.3dBm and Rx power of 2.2mA@3.3V
- On-chip HiFi audio codec and PDM interface that support up to 4 digital microphones, 2 analog microphones and 2 analog speakers
- 3744KB on-chip SRAM, interfaces for NOR, NAND, eMMC, (SiP) HPI-PSRAM and QSPI-NOR
- BGA256, 6.5×8.5×0.94mm, up to 154 GPIOs

Applications

- Smart watch
- · Activity and fitness monitor
- · Location and motion tracker
- Cost-effective display solution
- Graphical HMI device
- Smart home appliance
- Low-power sensor hub

SF32LB58x is a family of highly integrated high-performance SoC MCUs for ultra-low power AloT scenarios. It adopts a big.LITTLE architecture based on Arm Cortex-M33 STAR-MC1 processor, and is embedded with dual 2D/2.5D GPUs, two neural network matrix accelerators, dual-mode BT5.3, and audio codec. SF32LB58x can be used for a wide variety of applications such as smart wearables, smart HMI devices, and smart home appliances, etc.

The dual-big core high performance application processor can operate at up to 240MHz, delivering up to 984 CoreMark per core. The low-power processor can operate at up to 96MHz for 394 CoreMark and serves as both sensor hub and Bluetooth controller at high energy efficiency of 3.88uA/CoreMark. This architecture delivers no-compromise user experience of both high performance computing required for rich HMI and always-on ultra-low power sensor control and wireless connectivity.

The dual 2D/2.5D GPUs, at up to 240MHz, support vector graphics and fonts, 4-layer alpha blending, hardware accelerated rotation and scaling, and conversion of various common graphic formats. eZip[™]2.0 supports lossless compressed graphics file, saving memory bandwidth and storage capacity. The dual-LCD controller can support interfaces of 8080/QSPI/MIPI-DSI/JDI at a full-screen refresh frame rate up to 60fps.

The dual-mode BT5.3 transceiver has a maximum Tx power of 13dBm at EDR2 mode, and 19dBm at BLE mode. The receiver consumes peak current of 2.2mA@3.3V at BR mode, and has a sensitivity of -100dBm (1Mbps) for BLE and -96.3dBm for BR.

PB0058-SF32LB58x-EN (V0.7) sales@sifli.com

SF32LB58x

Product Brief

CPU and Memory

- High Performance Application Processor (HCPU/ACPU)
 - Arm Cortex-M33 STAR-MC1, FPU/MPU
 - Clock up to 240MHz, adjustable
 - Up to 360DMIPS, 965 EEMBC CoreMark per core
 - I-Cache + D-Cache
 - HCPU: 32KB(2-way)+32KB(4-way)
 - ACPU: 16KB(2-way)+16KB(4-way)
 - SRAM: 2176KB(HCPU)+512KB(ACPU)
 - CoreMark power: 34µA/MHz @3.3V, 240MHz
- Ultra Low-Power Processor (LCPU)
 - Arm Cortex-M33 STAR-MC1, FPU/MPU
 - Clock up to 96MHz, adjustable
 - Up to 144DMIPS, 386 EEMBC CoreMark
 - I/D-Cache: 16KB (2-way)+16KB (4-way)
 - SRAM: 1056KB (all retention SRAM)
 - CoreMark power: 15.9μA/MHz @3.3V, 48MHz

Wireless Connectivity

- Dual-mode BT5.3, with BLE Audio support
- Sensitivity:-100dBm (BLE/1Mbps), -96.3dBm (BR), -95.5dBm (EDR2), -88.5dBm (EDR3)
- Maximum Tx power: 13dBm (EDR2/3), 19dBm(BR/BLE)
- Rx peak current (BR): 2.2mA@3.3V

Graphics and Display

- 2D/2.5D GPUs
 - 1×2D/2.5D GPU—ePicasso[™]2.0
 - 1×2D/2.5D GPU—Vivante GCNanoUltraV
 - Vector graphics and fonts
 - Hardware-accelerated rotation, scaling, mirroring
 - Maximum resolution: 1024×1024
 - Support aRGB8565, aRGB8888, L8, alpha blending
- Lossless Decompression Accelerator eZip[™]2.0
 - Lossless graphics decompression, support native animation, concatenated operation with ePicasso[™]2.0
- JPEG Hardware Accelerator
 - JPEG/MJPEG image encoding and decoding
 - JPEG image cropping and scaling
- LCD Controller
 - Support 8080, SPI, Dual-SPI, Quad-SPI, MIPI-DSI, JDI
 - TurboPixel[™] FB compression and decompression
 - Dual-LCD controller, support low power always-on display based on little core

Neural Network Matrix Accelerator

- · Matrix convolution acceleration for TinyML scenarios
- · Processing power up to 1.92GOPS

Hardware-Accelerated Digital Signal Processing

- Two FFT accelerators, Two FIR filter accelerators
- Three CORDIC co-processors for trignometric functions

Memory Interface

- 5×QSPI (MPI), support NOR, NAND, QPI-PSRAM
- 2×OPI/HPI-PSRAM, up to 144MHz
- 2×SD/SDIO/eMMC, one 4-bit and one 8-bit,support SD3.0, SDIO3.0 and eMMC4.51

Others

- DMA
 - General DMA: data transfer for peripherals
 - extDMA: data transfer for external memory
- Security
 - AES, HASH and CRC hardware accelerator
 - True random number generator (TRNG)
 - PSA Certified Level 1
- Audio
 - Audio sample rate conversion accelerator
 - Audio EQ accelerator
- Timers
 - $5\times16b$ GPTIM, $2\times32b$ ATIM, $4\times32b$ BTIM, $3\times24b$ LPTIM
 - $1 \times RTC$, $2 \times 24b$ WDT, $1 \times IWDT$
- Analog Peripherals
 - 1×12-bit general purpose SAR ADC, 8 channels
 - 1×16-bit Sigma-Delta ADC, 5 channels
 - 3×Low power voltage comparator
 - 2×24-bit audio ADC, 2×24-bit audio DAC
- I/O Peripherals
 - $6 \times UART$, $7 \times I^2C$, $4 \times SPI$
 - $-3\times I^2S$, $2\times PDM$
 - 1×USB2.0 HS Host/Device
 - SIM card controller
 - Peripheral Task Controller (PTC)
- Power Management
 - Power supply: 1.7 to 3.6V, $-40 \text{ to } 85^{\circ}\text{C}$
 - Two high-efficiency bucks and low-power LDO
 - Sleep current with RTC wake-up: <1μA

Package

• BGA256, 154(HP94+LP60) GPIOs, 6.5×8.5×0.94mm